Space, shape and measurement: Solve problems by constructing and interpreting trigonometric models
Subject outcome 3.6
Solve problems by constructing and interpreting geometrical models.
Learning outcomes
- Define and use the following trigonometric functions: [latex]\scriptsize \cos \theta[/latex], [latex]\scriptsize \sin \theta[/latex], [latex]\scriptsize \tan \theta[/latex].
- Calculate trigonometric ratios in each of the quadrants where one ratio in that quadrant is given.
- Example: If [latex]\scriptsize \sin \theta =\displaystyle \frac{3}{5}[/latex] and [latex]\scriptsize 90{}^\circ \le \theta \le 180{}^\circ[/latex] determine [latex]\scriptsize \cos \theta[/latex].
- Solve problems in two dimensions using the trigonometric ratios [latex]\scriptsize \cos \theta[/latex], [latex]\scriptsize \sin \theta[/latex], [latex]\scriptsize \tan \theta[/latex].
- Express an appreciation of the contribution to the history of the development and the use of geometry and trigonometry by various cultures (NOT EXAMINABLE).
Unit 1: Trigonometric ratios
By the end of this unit you will be able to:
- Define and use the trigonometric ratios of [latex]\scriptsize \cos \theta[/latex], [latex]\scriptsize \sin \theta[/latex] and [latex]\scriptsize \tan \theta[/latex].
- Calculate the trigonometric ratios in each quadrant of the Cartesian plane.
- Calculate the value of expressions containing trigonometric ratios.
Unit outcomes: Unit 2: Problems in two dimensions (2D)
By the end of this unit you will be able to:
- Use a calculator to calculate the value of the three basic trig ratios for different angles.
- Solve problems in two dimensions (2D) using the trigonometric ratios [latex]\scriptsize \cos \theta[/latex], [latex]\scriptsize \sin \theta[/latex], [latex]\scriptsize \tan \theta[/latex].