Functions and Algebra: Sketch and interpret functions and graphs

Subject outcome

Subject outcome 2.1: Use a variety of techniques to sketch and interpret information from graphs of algebraic and transcendental functions.

Learning outcomes

  • Generate graphs by means of point-by-point plotting using/supported by available technology.
  • Use the generated graphs to make and test conjectures.
  • Investigate and generalise the impact of [latex]\scriptsize a[/latex] and [latex]\scriptsize q[/latex] on the functions:
    • [latex]\scriptsize y=ax+q[/latex]
    • [latex]\scriptsize y=a{{x}^{2}}+q[/latex]
    • [latex]\scriptsize y=\displaystyle \frac{a}{x}+q[/latex]
    • [latex]\scriptsize y=a\cdot {{b}^{x}}+q[/latex] where [latex]\scriptsize b>0[/latex]
    • [latex]\scriptsize y=\sin x+q[/latex]
    • [latex]\scriptsize y=\cos x+q[/latex]
    • [latex]\scriptsize y=\tan x+q[/latex]
  • Define functions.
  • Identify the following characteristics of functions:
    • Domain and range
    • Intercepts with axes
    • Turning points, minima and maxima
    • Asymptotes
    • Shape and symmetry
    • Periodicity and amplitude
    • Functions or non-functions
    • Continuous or discontinuous
  • Sketch graphs and find equations of graphs for the following:
    • [latex]\scriptsize y=ax+q[/latex]
    • [latex]\scriptsize y=a{{x}^{2}}+q[/latex]
    • [latex]\scriptsize y=\displaystyle \frac{a}{x}+q[/latex]
    • [latex]\scriptsize y=a\cdot {{b}^{x}}+q[/latex] where [latex]\scriptsize b>0[/latex]
    • [latex]\scriptsize y=\sin x+q[/latex]
    • [latex]\scriptsize y=\cos x+q[/latex]
    • [latex]\scriptsize y=\tan x+q[/latex]

Unit 1 outcomes

By the end of this unit you will be able to:

  • Define a function.
  • Identify if a relationship is a function or not.
  • Sketch and find the equation of a linear function ([latex]\scriptsize y=ax+q[/latex] or [latex]\scriptsize y=mx+c[/latex]).
  • Explain the effects on the shape of the graphs of linear functions of [latex]\scriptsize a[/latex] and [latex]\scriptsize q[/latex] or [latex]\scriptsize m[/latex] and [latex]\scriptsize c[/latex].
  • Find the equation of a linear function from its graph or other details.
  • State the domain and range of a linear function.

Unit 2 outcomes

By the end of this unit you will be able to:

  • Identify the following characteristics of quadratic functions:
    • turning points
    • minima and maxima
    • shape and symmetry.
  • Sketch and find the equation of the graph [latex]\scriptsize y=ax^2+q[/latex].
  • Investigate and generalise the impact of [latex]\scriptsize a[/latex] and [latex]\scriptsize q[/latex] on [latex]\scriptsize y=ax^2+q[/latex].

Unit 3 outcomes

By the end of this unit you will be able to:

  • Identify the following characteristics of functions:
    • continuous or discontinuous
    • asymptotes.
  • Sketch and find the equation of the graph [latex]\scriptsize y=\displaystyle \frac{a}{x}+q[/latex].
  • Investigate and generalise the impact of [latex]\scriptsize a[/latex] and [latex]\scriptsize q[/latex] on [latex]\scriptsize y=\displaystyle \frac{a}{x}+q[/latex].

Unit 4 outcomes

By the end of this unit you will be able to:

  • Sketch and find the equation of the graph [latex]\scriptsize y=a.{{b}^{x}}+q,b>0[/latex].
  • Investigate and generalise the impact of [latex]\scriptsize a[/latex] and [latex]\scriptsize q[/latex] on [latex]\scriptsize y=a.{{b}^{x}}+q,b>0[/latex].

Unit 5 outcomes

By the end of this unit you will be able to:

  • Identify the following characteristics of trigonometric functions:
    • periodicity
    • amplitude.
  • Sketch the graph [latex]\scriptsize y=a\sin x+q[/latex], [latex]\scriptsize y=a\cos x+q[/latex] and [latex]\scriptsize y=a\tan x+q[/latex].
  • Identify the asymptotes of [latex]\scriptsize y=a\tan x+q[/latex].
  • Investigate and generalise the impact of [latex]\scriptsize a[/latex] and [latex]\scriptsize q[/latex] on [latex]\scriptsize y=asinx+q[/latex], [latex]\scriptsize y=a\cos x+q[/latex] and [latex]\scriptsize y=a\tan x+q[/latex].

License

Icon for the Creative Commons Attribution 4.0 International License

National Curriculum (Vocational) Mathematics Level 2 by Department of Higher Education is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Share This Book